\$-SMART BLEND OPTIMIZER - STEP-BY-STEP HANDS ON

1. Installation and Requirements

- Microsoft (MS) Windows 7, 8 or 10
- Apple MAC's: require Windows Emulator
- Microsoft (MS) Office or EXCEL, versions 2007, 2010, 2016, 365
- MS Excel Solver add-in installed

2. Optimizer file names

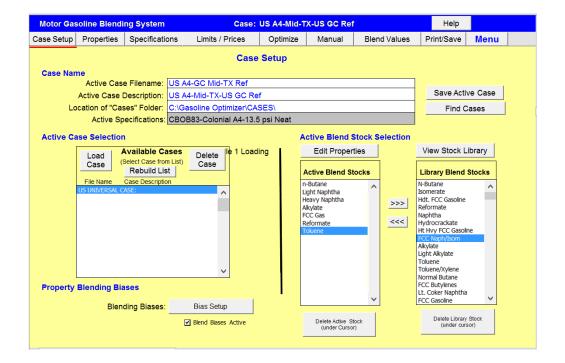
- SmartBlend-MG for motor gasoline
- SmartBlend-DF for Diesel
- SmartBlend-FO for Bunker Fuel and Fuel Oil

3. Installation Directory

Copy distributed software to any LOCAL directory (not CLOUD or Network)

Preferably root directory of your PC; example: C:/ara/SmartBlend-MG_17_4

4. To Start Using the Optimizer

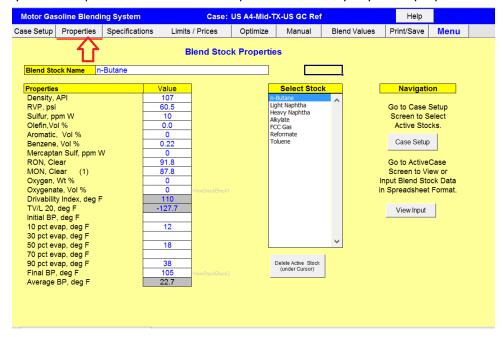

Step 1) Starting the Optimizer

To open, double click on C:/ara/SmartBlend-MG_17_4 You will also see a sub-folder labeled Cases This is where your examples (called "cases") are stored.

A message will ask you to accept EULA license agreement to see the beginning screen. Next click BEGIN button.

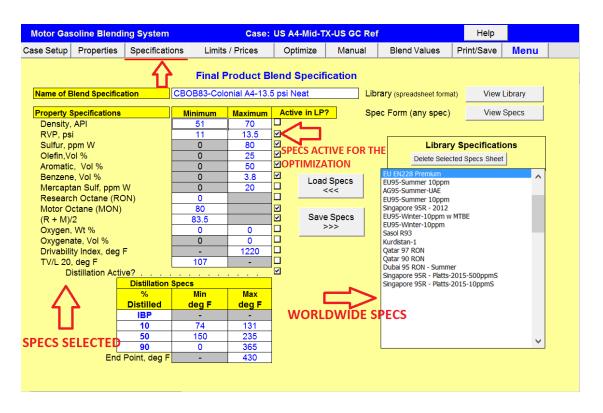
The next display allows you to select a case to OPEN, or create a new case.

STEP 2) Create a Case or Open an Existing Case


The Optimizer comes with a few customizable cases. You can open one of them and adding your own blend components properties up to 15 components:

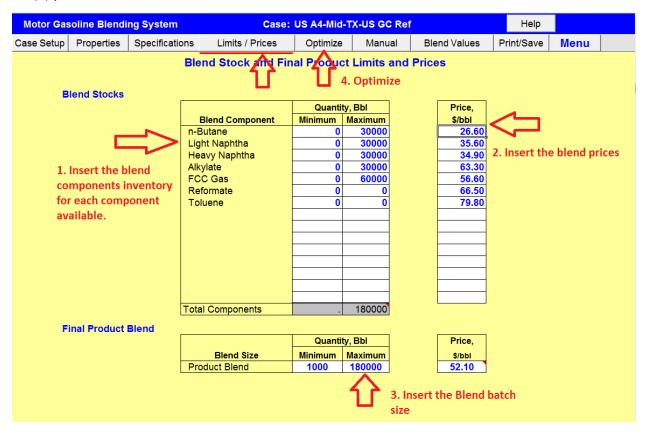
	Blend Qu	Blend Qualities				t Qualities													
Specification Na	me: CBOB83-	Colonial A4-13	5 psi Neat		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Minimu	n Maximum	Optimum	Manual															
	Spec	Spec	Blend	Blend		Light	Heavy												
	Quality	Quality	Qualities	Qualities	n-Butane	Naphtha	Naphtha	Alkylate	FCC Gas	Reformate	Toluene	0	0	0	0	0	0	0	0
Density,		51 70						70.5	58.8		28.4								
RVP.		00 13.500	13.46	12.37	60.5	12.1	4.88	9.5	7.95	3.8	1								
Sulfur, p	ppm W	0 80	46	31	۱ ,	34	20	20	32.4		20								
Orom	***	0 25				0.035	0.05	0.5	32.3		0								
Arom	atic,							_											
Benz	ol %	0 50	31.3	19.7	l l	1.97	7.17	U	21.75	50.7	100								
V	ol %	0 3.8	0.4	0.3	0.22	0.35	0	0	0.88	0.08	0.1								
Sulf,	ppm W	0 20	0.0	_	۱ .	0	0	0	0		0								
RON, C	Clear		- 87.0		91.8	67	62	92.1	91.67	99.1	110								
	xx	-		-	89.8	66.5	61	91.6	85.46	93.2	104								
MON, C	Clear	-	- 80.000	84.4	87.80	66.00	60.00	91.10	79.25	87.30	98.00								
	xx	-	-	-		66.50	61.00												
- Ожудон	xx	-		-															
	%	0 (0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00									
Oxyger V	nate, 'ol %	0	0	0	۱ .	0	0	0	0										
Index,	F	- 1220	970.9667			888.0	1157.5	1178.5	1117.0	1531.5	1253.5								
TVIL	L 20, leg F 1	07 -	107.10	116.10	-127.7	115.3	163.0	140.7	140.3	175.7	194.7								
Initial			107.10	85.3		86	121	28.9	28		224								
10 pct e			100.1		12	116	165	121	130		227								
30 pct e			139.1					189	165	-	228								
50 pct e			162.2			159	208	240	190		228								
70 pct e			280.8				200	257	284		228								
90 pct e			334.4		38	237	286	277	352		229								
Final		_	411.5				335	397	460		235								

You can add or change the names of your blend components, plus the blend properties like RVP, RON, MON, Sulfur, Aromatic, and so on.


STEP 3) See the Blend Component Properties

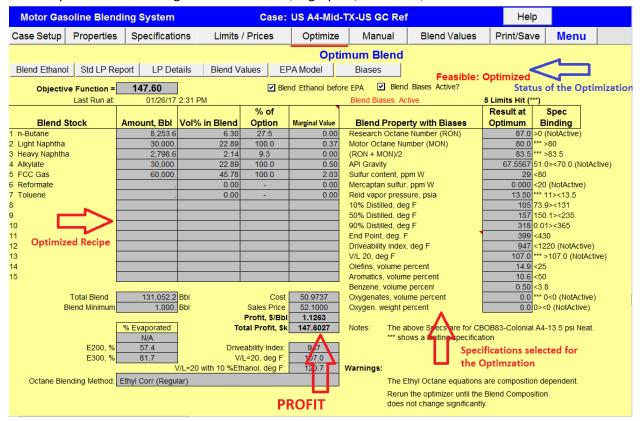
Click on "Properties" Tab on the menu bar and you are able to see the Blend Properties just created previously. Here it is possible to add more components or modify any blend properties:

STEP 4) Select the Blend Specifications


Click on "Specifications" tab to select the right specifications. The Optimizer comes with 25 built-in Worldwide Specs. You can select the one depending on the location/country/region you are dealing with. If you are dealing with Europe, you can select for example EU95, if you are dealing with Singapore you can select Singapore 95R. It is also possible create your own specifications directly or by cloning an existing one.

Here it is very important to select the property specifications that are going to be used during the optimization. For example, checking the MON means that property specification is active for the optimization. Unchecking the Benzene content(%) property specification it means this is not active during the optimization.

STEP 5) Inventory and Price


Click on "Limits/Prices" tab to select the blend component inventory and prices. What you need to do is just add the blend components inventory, Bbl,(1) the blend component prices(2) and the Blend batch size(3) you want to make.

After inserting blend inventory and prices, you are ready to Optimize clicking on the "Optimize" (4) tab.

STEP 5) Optimize

At this point, it is possible to Optimize the blend and analyze the results. Optimize means maximizing blend profit while meeting all the constraints, e.g. specs, batch size, etc.

After the Optimization we can see the "Status" of the Optimization, in this case the optimization is feasible, i.e. Specs, and Batch Size are met.

In this last screen we have the "Optimized Recipe", the "Specifications selected for the Optimization" and the most important thing, "The Profit".

STEP 6) Considerations

The \$-Smart Blend Optimizer is a powerful tool, with a friendly interface that allows us to predict in the shortest amount of time if you can have profit with the Blend Components, the Blend Inventory and the Specifications you have. All of them (Blend Properties, inventory, price) are taken into account during the Optimization.

STEO 7) Information on the Optimizer

The Optimizer uses Linear Programming. The result of the optimization takes into account simultaneously Blend Properties, Specs, Blend inventory and prices.

It is a single Blend Optimizer, meaning it is optimizing one blend at the time.

All the non-linear blend properties are calculated non-linearly, for example the RON and MON have built-in the RT-70 equation and the RVP the Chevron equation.

The Optimizer has also integrated important features such as:

- 1) Calculating the blend properties after adding Ethanol;
- 2) Analyzing whether the optimized batch meets the EPA rules for reformulated gasoline;
- 3) Manual blending tool where the user can insert manually the blend recipe, and see the expected blend properties.

For Pricing and Info contact lee@refautom.com